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Equations of the balance of mechanical energy of monodisperse suspensions have 
been obtained by the method of averaging over a statistical ensemble of possible 
spatial configurations of solid sperical particles. 

At the present time nonequilibrium thermodynamics of heterogeneous media is constructed 
by generalization of the methods [i, 2]. A review of the results obtained in this direction 
can be found in [3-6]. In [7, 8] the calculation scheme contains thermodynamics of the phase 
separation surface. In [6] an expressionis obtained for the production of entropy, and also a 
complete system of equations of motion of a disperse medium in which processes of heat and 
mass transfer take place in the presence of chemical reactions and phase transitions. 

We know that to obtain an explicit form for the production of entropy, continuum equa- 
tions of energy balance are necessary. However, different models of continua lead to dif- 
ferent results reflecting both the concrete model representations and the methods of averag- 
ing the "micrOscopiC' equations which are valid on the level of the individual phases. Re- 
cently, Buevieh and his collaborators [9, i0] have developed very effective statistical 
methods for the derivation of continuum balance equations for observable mean motion of a 
mixture. They allow us to consider from a unified position the balance equations and the 
rheological equations of state. Already on the basis of them it has been possible to solve 
a fairly large number of problems of heat and mass transfer and hydrodynamics of disperse 
media (see Inzh.-Fiz. Zh. of recent years). 

It is of interest to use a statistical ensemble [9, i0] also for the construction of 
nonequilibrium thermodynamics of suspensions. Since in [9, I0] only equations of balance of 
the impulse and moment were considered, below we shall present the derivation of equations 
of balance of the kinetic and potential energies. 

The theory being considered is constructed on the concept of a statistical ensemble of 
possible spatial configurations of solid particles with the detail distribution function 

�9 (t, ~'~... r(~)), ~dT~" . . .  d7 ~ '  = 1. (1) 

T~e radius vectors of particles ~(i) (i = I...N) vary arbitrarily within the limits of the 
volume occupied by the mixture (here 

[~o--~i~l>/2a, i=#=], 1~O--Tbou~aryl>/a 
in view of ;~he condition of spheres of radius a not being exceeded) and form a 3N-dimen- 
sional space C N. We note that the distribution function in the phase space ~ can in the 
general case also depend on vectors of dipole moments of particles, but in the present paper 
we shall not consider the rotation of particles. The "spreading" of the properties of dis- 
crete particles over the volume is effected by means of the generalized function 01 con- 
nected with the Heaviside function n: 

N 
Oi(71C~) = ~ h ( a - - [ ; - - r ~ ~  �9 (2) 

For the solid phase we introduce the generalized function 

Oo(~CN)= 1---0,, O~= |, O ~ = l .  (3) 

For a local physical quantity (velocity, impulse, energy, etc.) G(t, rlCN) , defined within 
particles and in the liquid but in the general case discontinuous on the surface of parti- 
cles, weintroduce the ensemble averages 

g(t, ~ = <6 > = SO(t, 71C~)~(t lCN)dC~, (4) 
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d C ~  - d ~ ' )  . . . ~(~,)  , 

~(l, ~go(!, r~= < OoG >, (4a) 

p(t, ~ g , ( t ,  r ~) - -  (1 - - e ) g ,  -- ( O~O >. (4b) 

The averaging operator commutates the operations of differentiation with respect to the hy- 
drodynamic variables (coordinates) r and the time t. After application of the averaging op- 
erator <...> the balance equations, in addition to averages quantities, ~ contain terms due 
to random pulsations of the phases and terms describing their interaction. The latter are 
expressed in terms of functionals of mean particles on the surface. Thus, the "macroscopic" 
(averaged) behavior of the mixture can be connected with the behavior .at the level of individ- 
ual particles, and in a certain approximation we can go over to the problem of a "test 
particle." In the present :work we consider only mixtures of solid phase with hard parti- 
cles without diffusion, chemical reactions, and phase transitions. The materials of the 
phases are considered incompressible. Taking into account the asymmetry of the balance equa- 
tions for different phases and the complexity of the results, it is convenient to introduce 
the matrices 

0 = Ot ' 

with 01=0 ,  O~=e, SpO= 1, aq -b=  !, 

I - - o = ( O  O' 00o t ,  

o) ('o 0 , a= , b= , (5) 

Using the generalized density function 

we find 

D =Oodo + eldl, 

(6) 

(7) 

(OodoO), DOG=dOG= ( doo Oo G 0 I (8) 
D O = d O =  0 0 ,  dt d ~ O f G  " 

Applying the operation of averaging (4) to the matrices 8, (7) and (8), we obtain the phase 

averages 

=0=(; 0) <DO>=~d=D=(~ d00) 
P ' P ,di ' 

< O~G > = dog = ~ ,  (9) 

<O> 

(0) o go 
! 11 d = d, g = 0 gl 

The mean value G for the mixture equals 

g= < G > = Sp < OG > = Sp~ = ego+ pg~. (lO) 

The mean with respect to the phases can be expressed in terr~Is of the mean for the entire mix- 

ture and the mean for the solid phase. For this we write 

(< e~>--a<0--e)a>)+a< 0--e)G> 

Taking into account (5), (6), and (i0), after algebraic transformations we obtain 

< OG > = <)g = a Sp (Og) + (b --  a) < OiG > �9 ( n )  

Analogously, we can write 

< ~G > ----- V (aSp(0g)) -~ ~ -- a) ( elvG >. (12) 

The second term in (12) can be reduced to the integral over the surfac, e of the test 
particle and it describes the contribution of the surface effects. The elements of the ma- 
trices have the tensor dimensionality 0, i, 2. The dot (') between matrices denotes scalar 
product of their elements, while : denotes the product of tensor elements contracted twice. 

The matrix of generalized functions e is subjected to the equation 
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a - - - O + v .  (~=0, (n) 
Ot 

with ~ =--dO =0. 
d~ 

+ 

V. Averaging (13) over the ensemble and taking into account 
conservation of mass of incompressible phases 

a 
- o  + v-(Ov) = 0, 

at 
where 

When deriving (13) we have taken into account solenoidality of the field of velocities 
(9), we obtain the equatioB of 

SpO, = 1, 

\ o  v, ~,= p-'< 0,7 >. 
We introducethe pulsation fields 

(14) 

e G  = e g  + eG' ,  (15) 

# = ~ +i,rv'. 

Taking into account (13), the averaged value of the substantial derivative can be represented 
in the form (for details of the averaging procedure see [9]) 

<DO dO dDG > = d ( e  dG 

a ~ a (16) 
- at (~)+v . (dogv+4(eG'V '>= a----t ( D g ) + V ~ ) g v + d  <OG'V'>. 

We s h a l l  average the equation of motion which is  v a l i d  f o r  each of the phases: 

D dP -m- =- ; .~ . -  D,, 

where Z is  the pressure tensor ( i n  [9] the s t ress tensor E is  used); ~ is  the p o t e n t i a l  o f  
the external forces. Having multiplied by 8 and carried out the averaging operation with 
(II), (12), and (16) (G - V) taken into account, we obtain 

--a--(Dv) + v.(Dvv) = --  ~.,,~ + fo - ~ ,  (17) 
at 

Here e a = a S p ( O . ) + o * ,  f ~ = ( b - - a ) ~  a ([~ 0 ], matrix of mean stresses of the phases; a*-- - 
\u / ~i 

d<o~'P' > = Q~ 0(%V'~'> ~ ) , matrix of the actual pulsating stresses ; 7= __ ( 01V.Z > -~ 
d, < %gW ~ > 

.-> .-> 

mean hydrodymamic force acting on particles in a unit volume; V'V', diadic product of the 
pulsating constituents of the velocity field. The matrix equation (17) formally coincides 
with the equation of balance of impulse for a single-phase medium, and is completely equiva- 
lent to the system of equations obtained by Buevich and Shchelchkova in [9, i0]. If we take 
into account the pulsations of the external field, then (17) will contain additional terms, 
while instead of ~ there enters the matrix ~ which will be defined below. 

We multiply all terms of Eq. (17) by the matrix v. After standard transformations we 
obtain the equation of balance of the translational kinetic energy of the averaged motion of 
the disperse medium 

a Dv 2 +V" Dv2v :~V'(oa'V)+o~:VV-F'f~,v--Dv'v*. (18) 
at 

Here ~ . v  = a S p ( 0 o ) . v  + , * . v ;  ,,,,:V v = a S p ( e o )  :V v + a*:VV. 

Equation (18) also formally coincides with the equation of balance of t~e kinetic energy 
of the averaged motion of a single-phase medium, and its terms have analogous physical mean- 
ing. 
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To isolate the contribution of the puls,ating constituents to the balance of .kinetic 
energy, we carry out averaging of the equation of balance of the translational kinetic energy 
which is valid at the level of the individual phases: 

We multiply (19) term by term by 0 and, putting in (15) G - E, ~, we introduce it into the 
pulsation equation. The application of the averaging (4) yields the following. On the left 
side (19), with (16) taken into account 

1 <2DO d . . , . ~ > =  1 d (v'+2v.V'-]-IV' ."))= 0 [IDv2_}_ _l_d ] 
f dt Y < DO dt 0--7- 2 < O (P'. ~') > + 

(20) 

+ V .  Dv2v--[--d<OT'V').v + ~ v d < @ { ~ . ~ V ' ) > + ~ d < ~ ' ( ~ . ~ ) )  . 

On the r i g h t  s ide ,  by means of (11)(G=(@o+@Y.')(v+iV'))  , (12) and (10),  the  sum of the f i r s t  
two terms is represented as: 

-< > + < oy > < +, 

- -  Co - -  a) < O, (~].'X).~" > = - a ~  [Sp (0~-v) + a < Z ' .  if' > + 

+aSp (0o :'Vv)+a ( E' : V~," > + (b -- a)7.v + (a --b) < O, (~ .X). V' ) .  (21) 
The last term in (19), with pulsations of the external force field taken into account, equals 

(DO~.V,) =Dv.vV+d(~'{V.*'))+d<Ov*').v, T= (0~~ (22) 

Summing (21), (22) and equating the result to (20), after simple transformations we obtain 
the equation of balance of the translational kinetic energy of the phases with pulsations 
taken into account 

o ova+ [+~ 
Ot 

+--~- dv ( O (7'.V') > + d ( O T ' ( ~ . P )  ) ----- - -  v . a S p ( O o . v )  + 

. . r  

+ o * .  v + a  < E'.V -~ > ]+(b--a)~.  v + (a - -  b) ( Or( V .E) -  V" > + a Sp (Oo.~v)+  

+ a ( X" :~' > -- Du d ( OV'.v*' > -- d < ~*' >.v. (23) 

In 42.3) we have taken into account the fact that o*= d (~'V') (17). Formally in the case O-+a, 
(23) is transformed into the equation of balance of mechanical energy of a single-phase medi- 
um [ii]. The physical meaning of the terms on the left side of (23) is: behind the sign 
~/3t there is a sum of the-kinetic energy of average and pulsating motions; behind the sign 
V: the first term is the density of flow of the translational kinetic energy of the averaged 
motion, the second term is the density of flow of the pulsating energy with averaged motion 
of the phases, the third term is the density of flow of the kinetic e~ler~y with pulsating 
motion of the phases. The terms on the right side are: behind the sign ~ there are the den- 
sities of flow of energy due to the work of mean molecular stresses and their pulsations; the 
~ensities of flow of energy due to the work of effective pulsation stresses; the term with 
f equal to the power of the force of hydrodynamic interaction of the phases; the terms in- 
ciuding products of stress tensors and velocity gradients, twice contracted, describe the 
powers due to the forces of pressure and viscous friction; and, finally, the last terms con- 
stitute the powers of the external mass forces and their pulsations. 

We shall take into a_~ccount in (18) the pulsations of the external force field, having 
replaced Dv.v, with ~ Dv.v~--d ( O Vq' ) .v ; then, subtracting term by term (18) from (23), we 
obtain the equation of balance of the pulsation energy of the phases 

o d < oP'.  V' ~ + v �9 dv < o~ ' .v '  > + ~ d  Ot 2 (Or -- a v t S p ( O ~ . v ) + S p ( ~ . v ) ] +  

+ (a - -  b) < O~ (V.E).V' > + a ( X': ~TV' ), - -d  < OV' .V, '  > --a* : VV. (24) 
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The last term in (24), just as in the case of a single-phase medium, describes the mutual 
transformation of energy of the pulsational and averaged motions. 

We carry out averaging of the equation of balance of the potential energy 

�9 -4- 

D d~ = Dp.V~. (25) 
dt 

After multiplication by 0 and averaging we obtain 

(D~O 4- v.(Dv~ 4-d ( O~'~' > ) = Dv.vT 4-d ( OVa' >.v 4- fl ( OV'.v~' >. (26) 
@t 

In order to go over to equations of balance for the mixture as a whole�9 we have to compute 
Sp of all terms of the matrix equations (17), (18), (23)�9 (24), and (26). In view of the 
cumbersomeness of the results�9 we shall write out separately theequations of balance only 
for the kinetic energy (23). Taking into account the explicit form of the matrices entering 
into (23), we obtain for the solid phase 

Ot y do < OoV'.V' > + V " ~-~doV~V + 
t 

+-~ Oo4<O2'.P'>+ ?-.do > = 

+ o,~,.~,~+,~o.~,o+<~,' P > ) - - f . ~ , o + < o , ( ~ . ~ ) ~ '  > + 

+ ~ao~o.~,o - < Oo~,' > .~o --do < Oo~'.V,' > + ~o:  V~o + o~:  v~,, + ~':vV' >, 
(27) 

and for particles 

@t 

+ -~,a, o , (~ ' .P )>+ d, > = - -  

. +  . - ~  . - >  

4- ~. v ,  - -  ( O, (?.  Y.) V'  > - -  9d,v~. V~;, 4-d, ( O, V~;' > �9 vt - -  d~ < O,V' "~V*' ) .  (2s) 

In contrast to the equations of balance encountered in the literature, in the given case [9, 
i0] the powers of the forces of pressure and dissipation as a result of viscous friction enter 
into Eq. (24) for the solid phase. This is connected with the fact that the presence of par- 
ticles in the flow leads to the appearance of the effective stresses <~> = ~ = soo + poz, 
caused by the perturbations being introduced by the particles. 

The next step of the computations is connected with concretization of the quantities 
and f. In addition, the equations thus obtained are of interest in themselves; they allow 
us to go over to analysis of entropy balance in a suspension. 

NOTATION 

0o and 0z�9 generalized functions; G�9 a specific local quantity; g, mean value of G for 
the mixture; s, porosity of the mixture; p, mean volume concentration of particles;O,l, a, b, 
matrices introduced into (5); D generalized density function; ~, d, D, g matrices defined in 
(9); V, local velocity; v, matrix of mean velocities; ~, local stress tensor; o, matrix of 
mean stresses; o*, matrix of effective pulsation stresses; 4, potential of an external field; 
f, force of hydrodynamic interaction of phases; do, dl, densities of materials of phases. 
Indices: <...>, averaging over an ensemble; 0, solid phase; i, solid particles; -, scalar 
product; :, tensor product twice contracted; a prime stands for fluctuation of a local quan- 
tity. 
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I0. 
ii. 

SOME PROBLEMS OF HEAT AND MASS EXCHANGE OF A GAS SUSPENSION WITH 

RECUPERATIVE ENERGY SUPPLY 

V, A. Sheiman and L. V, Nikolaichik UDC 536.245:541.182 

The problem of heat exchange between a stream of a gas suspension and a third 
heat-transfer agent with recuperative energy supply is formulated and solved 
numerically. 

The field of application of apparatus containing streams of a gas suspension with conduc- 
tive heat supply is extensive. It is sufficient to cite heat-exchange apparatus for drying 
(pneumatic pipes with outside heating and cooling), recuperators, and special cases of inten- 
sification of the heat-transfer process using an intermediate disperse packing. Some types 
of apparatus of this kind are presented in [i]. In the present report we discuss apparatus 
containing coaxially arranged cylinders: a gas suspension moves through the inner channel and 
a heat-transfer agent (gaseous or liquid) moves through the annular outer channel (Fig. la). 
Consequently, we are talking about heat exchange between three heat-transfer agents. Various 
cases of heat exchange between three heat-transfer agents with a constant heat-exchange sur- 
face are discussed in [2], andwith variable heat-exchange surfaces in [3]. In the latter case 
disperse particles are used as two of the heat-transfer agents. A special feature of the cal- 
culation of such systems is that the surface of each of the disperse heat-transfer agents is 
a variable quantity (in time or along a coordinate). Since the laws of variation of the sur- 
faces are the same, their ratio is represented in the form of a linear dependence, which sim- 
plifies the solution of the problem. When a drying process or a drying process combined with 
cooling is being performed~ most often only one heat-transfer agent is disperse (the material 
being dried or cooled), and its surface is a variable quantity; the second heat-exchange sur- 
face, the surface of the cylinder, while it varies with the coordinate, does so by a differ- 
ent law from that for the surface of the disperse heat-transfer agent, so that their ratio is 
expressed by a complicated dependence. This fact introduces a new and complicating element 

into the solution of the problem. 

As is known, the study of the kinetics o~ heating of the material, i.e., the determina- 
tion of its temperature, which is an integral index of the process and at the same time is 
connected with the moisture content of the material, is very important in the drying process. 
Since the most pronounced variation in the temperature of the material occurs in the period 
of a declining drying rate, only this period is considered below. 

Neglecting the gradients of temprature and moisture content over the cross section of a 
particle and assuming the absence of a temperature gradient over the cross section of the 
stream of gas suspension (i.e., developed turbulent flow of the gas suspension occurs), we 
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